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Abstract. The actinide elements U and Th undergo radioactive decay to three isotopes of Pb, forming the basis of three

coupled geochronometers. The 206Pb/238U and 207Pb/235U decay systems are routinely combined to improve accuracy. Joint

consideration with the 208Pb/232Th decay system is less common. This paper aims to change this. Co-measured 208Pb/232Th is

particularly useful for discordant samples containing variable amounts of non-radiogenic (‘common’) Pb.

The paper presents a maximum likelihood algorithm for joint isochron regression of the 206Pb/238Pb, 207Pb/235Pb, and5
208Pb/232Th chronometers. Given a set of cogenetic samples, the algorithm estimates the common Pb composition and concor-

dia intercept age. U-Th-Pb data can be visualised on a conventional Wetherill or Tera-Wasserburg concordia diagram, or on a
208Pb/232Th vs. 206Pb/238U plot. Alternatively, the results of the new discordia regression algorithm can also be visualised as

a 208Pbc/206Pb vs. 238U/206Pb or 208Pbc/207Pb vs. 238U/207Pb isochron, where 208Pbc represents the common 208Pb component.

For detrital minerals, it is generally not safe to assume a shared common Pb composition and concordia intercept age. In this10

case the U-Th-Pb discordia regression method must be modified by tying it to a terrestrial lead evolution model. Thus also

detrital common Pb correction can be formulated in a maximum likelihood sense.

The new method was applied to a published monazite dataset with a Th/U-ratio of ∼10, resulting in a significant radiogenic
208Pb component. Therefore the case study represents a ‘worst case scenario’ for the new algorithm. Nevertheless, it manages

to fit the data very well. The method should work even better in low-Th phases such as carbonates. The degree to which the15

dispersion of the data around the isochron line matches the analytical uncertainties can be assessed using the mean square

of the weighted deviates (MSWD) statistic. A modified four parameter version of the regression algorithm quantifies this

overdispersion, providing potentially valuable geological insight into the processes that control isotopic closure.

All the parameters in the discordia regression method (including the age and the overdispersion parameter) are strictly

positive quantities that exhibit skewed error distributions near zero. This skewness can be accounted for using the profile log-20

likelihood method, or by recasting the regression algorithm in terms of logarithmic quantities. Both approaches yield realistic

asymmetric confidence intervals for the model parameters. The new algorithm is flexible enough that it can accommodate

disequilibrium corrections and inter-sample error correlations when these are provided by the user. All the methods presented

in this paper have been added to the IsoplotR software package. This will hopefully encourage geochronologists to take full

advantage of the entire U-Th-Pb decay system.25
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1 Introduction

The lead content of uranium-bearing minerals comprises two components:

1. Non-radiogenic (a.k.a. initial or ‘common’) Pb is inherited from the environment during crystallisation. It contains all of

lead’s four stable isotopes (204Pb, 206Pb, 207Pb and 208Pb) in fixed proportions for a given sample.

2. Radiogenic Pb is added to the common Pb after crystallisation due to the decay of U and Th. It contains only three30

isotopes (206Pb, 207Pb and 208Pb), which occur in variable proportions as a function of the Th/U-ratio and age.

Denoting the measured and non-radiogenic components with subscripts ‘m’ and ‘c’ respectively, and assuming initial secular

equilibrium, we can write:

204Pbm = 204Pbc (1)

206Pbm = 206Pbc + 238Um
(
eλ38t− 1

)
(2)35

207Pbm = 207Pbc + 235Um
(
eλ35t− 1

)
(3)

208Pbm = 208Pbc + 232Thm
(
eλ32t− 1

)
(4)

where λ38, λ35 and λ32 are the decay constants of 238U, 235U and 232Th, respectively, and t is the time elapsed since isotopic

closure. In order to accurately estimate t, the common Pb composition is needed. One way to account for common Pb is to

normalise all the measurements to 204Pb. For example, using the 238U – 206Pb decay scheme:40

[
206Pb
204Pb

]

m

=
[

206Pb
204Pb

]

c

+
[

238U
204Pb

]

m

(
eλ38t− 1

)
(5)

Applying Equation 5 to multiple cogenetic aliquots of the same sample defines an isochron with slope
(
eλ38t− 1

)
and intercept

[
206Pb/204Pb

]
c
. Alternatively, and equivalently, an ‘inverse’ isochron line can be defined as:

[
204Pb
206Pb

]

m

=
[

204Pb
206Pb

]

c

{
1−

[
238U
206Pb

]

m

(
eλ38t− 1

)}
(6)

In this case, the isochron is a line whose y-intercept defines the common 204Pb/206Pb-ratio, and the x-intercept determines the45

radiogenic 238U/206Pb-ratio.

The isochron concept can easily be applied to the 235U – 207Pb system, by replacing 206Pb with 207Pb, 238Pb with 235Pb

and λ38 with λ35 in Equations 5 and 6. The accuracy and precision of the calculation can be further improved by solving the
206Pb/238U and 207Pb/235U isochron equations simultaneously and requiring t to be the same in both systems. The resulting50

three-dimensional constrained isochron is known as a ‘Total-Pb/U isochron’ and represents the pinnacle of statistical rigour in

U-Pb geochronology (Ludwig, 1998).
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In igneous samples, the conventional total Pb/U isochron requires isotopic data for two or more cogenetic aliquots. In the

simplest case, a two-point isochron can be formed by analysing the U-Pb composition of the U-bearing phase of interest along55

with a cogenetic mineral devoid of U (e.g, feldspar). In detrital samples, the common Pb intercept of the isochron can be an-

chored to some nominal value, or to a terrestrial lead evolution model (e.g., Stacey and Kramers, 1975). Thus, the 204Pb-based

total U-Pb isochron method is beneficial to nearly all applications of the U-Pb method.

Unfortunately, 204Pb-based common Pb correction is not always practical. First, not all mass spectrometers are able to mea-60

sure 204Pb with sufficient precision and accuracy. In ICP-MS instruments, the presence of an isobaric interference with 204Hg

precludes accurate 204Pb measurements. And second, because 204Pb is by far the least abundant of lead’s four naturally oc-

curring isotopes, it requires the longest dwell times. For single collector instruments, this degrades the precision of the other

isotopes to the point where the analytical cost of measuring 204Pb may outweigh its benefits.

65

One way to overcome both problems is to use the 232Th – 208Pb decay scheme to determine the common Pb component.

Thus, if we can estimate 208Pbc in Equation 4, then Equation 5 can be replaced with:

206Pbm
208Pbc

=
[

206Pb
208Pb

]

c

+
238Um
208Pbc

(
eλ38t− 1

)
(7)

and similarly for Equation 6 and the 235U – 207Pb equivalents of Equations 5 and 6.

70

This paper introduces a ‘U-Th-Pb isochron’ algorithm that achieves this reformulation. The algorithm is similar to Ludwig

(1998)’s total Pb/U isochron, but uses a unified approach that accommodates both random and systematic uncertainties. The

algorithms introduced in this paper will be illustrated using a published U-Th-Pb dataset for monazite grain #10 in sample

BHE-01 of Gibson et al. (2016). With a Th/U-ratio of ∼ 10, this sample represents a ‘worst case scenario’ in the sense that the

addition of lots of radiogenic 208Pb complicates the removal of the common Pb component. The fact that the new algorithm75

works very well for monazite implies that it is generally applicable low Th phases such as carbonates.

2 U-Th-Pb concordia

In conventional U-Pb geochronology, the set of concordant 206Pb/238U- and 207Pb/235U-ratios defines a ‘Wetherill’ concor-

dia line. Similarly, U-Th-Pb data can be visualised in 208Pb/232Th- vs. 206Pb/238U-ratio space (Figure 1.a). In the absence of

common Pb, samples whose 208Pb/232Th-ages equal their 206Pb/238U-ages plot on a U-Th-Pb concordia line. The addition of80

common Pb pulls samples away from this line. Common Pb correction amounts to moving samples back to concordia:
[

208Pb
232Th

]

∗
=
[

208Pb
232Th

]

m

−
208Pbc
232Thm

(8)
[

206Pb
238U

]

∗
=
[

206Pb
238U

]

m

−
[

206Pb
208Pb

]

c

208Pbc
232Thm

[
232Th
238U

]

m

(9)
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Figure 1. a. U-Th-Pb concordia diagram showing 206Pb/238U and 208Pb/232Th ratios for monazite grain #10 in sample BHE-01 of Gibson et al.

(2016). Uncorrected ratios are shown in green and common Pb corrected ratios in blue. b. 238U-232Th-206,208Pb and c. 235U-232Th-207,208Pb

isochron plots for the Gibson et al. (2016) dataset. Green ellipses represent the raw data. Blue ellipses show the same measurements with the

radiogenic 208Pb removed. The x-intercept of the two resulting isochrons yield the radiogenic U-Pb composition, and correspond to an age of

17.66 Ma. The y-intercepts of the yield the common Pb isotopic composition, with [208Pb/206Pb]c = 2.71 and [208Pb/207Pb]c = 12.41.
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where ‘∗’ marks the radiogenic component. Figure 1.a shows the effect of this correction on the Gibson et al. (2016) data, using
[
206Pb/208Pb

]
c

= 0.3685 and a variable 208Pbc/
232Thm-ratio calculated by rearranging Equation 4 for t= 17.66 Ma.85

An alternative visualisation is to plot the 208Pb/206Pb against 238U/206Pb (green ellipses in Figure 1.b,c). Removing the radio-

genic 208Pb-component and plotting 208Pbc/206Pb against 238U/206Pb creates a linear isochron array (blue ellipses in Figure 1.b).

The x-intercept of this line equals the radiogenic U-Pb composition whilst the y-intercept equals its common Pb composition.

The same exercise can be repeated for 208Pb/207Pb and 235U/207Pb (Figure 1.c). The linear fit corresponds to a concordant U-Pb90

age of 17.66 Ma and a common Pb composition with [208Pb/206Pb]c = 2.56 and [208Pb/207Pb]c = 11.71. The next section

of this paper introduces an algorithm to automatically find this optimal solution and propagate the corresponding uncertainties.

3 The U-Th-Pb isochron

The U-Th-Pb isochron line is constrained by three free parameters, the age (t) and the common Pb composition (α, β) where:

α=
[

206Pb
208Pb

]

c

and β =
[

207Pb
208Pb

]

c

(10)95

t, α and β can be estimated by minimising the sum of squares:

S = ∆TΣ−1
∆ ∆ =

[
KT LT MT

]



Ω1,1 Ω1,2 Ω1,3

Ω2,1 Ω2,2 Ω2,3

Ω3,1 Ω3,2 Ω3,3







K

L

M


 (11)

with

K =X −UβWγ− eλ35t + 1 (12)

L= Y −αWγ− eλ38t + 1 (13)100

M = Z − γ− eλ32t + 1 (14)

where U is the 238U/235U-ratio (= 137.818; Hiess et al., 2012),

X =
[

207Pb
235U

]

m

,Y =
[

206Pb
238U

]

m

and Z =
[

208Pb
232Th

]

m

(15)

are n-element column vectors containing the 207Pb/235U-, 206Pb/238U-, and 208Pb/232Th-measurements,

W =
[

232Th
238U

]

m

(16)105

is an n×n diagonal matrix with the 232Th/238U-measurements, and

γ =
208Pbc
232Thm

(17)
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is an n-element column vector with the inherited 208Pb/232Th-ratios. γ is unknown but can be estimated from the data along

with the scalars t, α, and β.

110

Σ∆ is the covariance matrix of the misfit parameters K, L and M . This matrix is obtained by error propagation of the

isotopic measurement and decay constant uncertainties:

Σ∆ = JTΣJ (18)

where

Σ =




s[X]2 s[X,Y ]s[X,Z] 0n×1 0n×1 0n×1

s[Y,X] s[Y ]2 s[Y,Z] 0n×1 0n×1 0n×1

s[Z,X]s[Z,Y ] s[Z]2 0n×1 0n×1 0n×1

01×n 01×n 01×n s[λ35]2 0 0

01×n 01×n 01×n 0 s[λ38]2 0

01×n 01×n 01×n 0 0 s[λ32]2




(19)115

in which

s[X]2 = In×n




s[X1]2

...

s[Xi]
...

s[Xn]2




, s[X,Y ] = In×n




s[X1,Y1]
...

s[Xi,Yi]
...

s[Xn,Yn]




and so forth, where In×n marks the n×n identity matrix, and s[Xi]2 and s[Xi,Yi] represent the variance and covariance of

Xi and Yi, respectively. The Jacobian matrix J is given by:

J =




1n,n 0n×n 0n×n

0n×n 1n×n 0n×n

0n×n 0n×n 1n×n

−t1×neλ35t 01×n 01×n

01×n −t1×neλ38t 01×n

01×n 01×n −t1×neλ32t




(20)120

where 1a×b, 0a×b and ta×b are a× b matrices filled with 1s, 0s and ts, respectively.

To minimise S with respect to t, α and β, we first need to estimate γ for any given value of these free parameters. To this

end, we replace γ by Z −M − eλ32t + 1 in Equation 14, so that:

K = K̂ +UβWM with K̂ =X −UβW (Z − eλ32t + 1)− eλ35t + 1 (21)125
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and

L= L̂+αWM with L̂= Y −αW (Z − eλ32t + 1)− eλ38t + 1 (22)

Plugging Equations 21 and 22 into Equation 11 and rearranging yields:

S =MTAM +BM +MTC +D (23)

where130

A=U2β2WdΩ1,1Wd +α2WdΩ2,2Wd + Ω3,3 +UαβWd(Ω1,2 + Ω2,1)Wd+

Uβ(WdΩ1,3 + Ω3,1Wd) +α(WdΩ2,3 + Ω3,2Wd) (24)

B =UβK̂TΩ1,1Wd +αL̂TΩ2,2Wd +αK̂TΩ1,2Wd +UβL̂TΩ2,1Wd + K̂TΩ1,3 + L̂TΩ2,3 (25)

C =UβWdΩ1,1K̂ +αWdΩ2,2L̂+UβWdΩ1,2L̂+αWdΩ2,1K̂ + Ω3,1K̂ + Ω3,2L̂ (26)135

D =K̂TΩ1,1K̂ + K̂TΩ1,2L̂+ L̂TΩ2,1K̂ + L̂TΩ2,2L̂ (27)

Taking the matrix derivative of S with respect to M :

∂S/∂M =MT (A+AT ) +B+CT (28)

Setting ∂S/∂M = 0 and solving for M :140

M =−(A+AT )−1(BT +C) (29)

Plugging M back into Equation 14 yields our estimate of γ, which allows us to calculate S. The values of t, α and β that

minimise S are then found by numerical methods.

4 Error propagation

The log-likelihood of the isochron fit is given by145

L=−1
2

[3 ln(2π) + ln |Σ∆|+S] (30)

7

https://doi.org/10.5194/gchron-2019-14
Preprint. Discussion started: 17 October 2019
c© Author(s) 2019. CC BY 4.0 License.



where |Σ∆| is the determinant of Σ∆. The covariance matrix of the three fit parameters is then obtained by inverting the matrix

of second derivates of the negative log-likelihood with respect to the vector γ and the scalars t, α, β (the Fisher Information

matrix):




Σγ s[γ,t] s[γ,α] s[γ,β]

s[t,γ] s[t]2 s[t,α] s[t,β]

s[α,γ] s[α,t] s[α]2 s[α,β]

s[β,γ] s[β,t] s[β,α] s[β]2




=−




∂2L
∂γ2

∂2L
∂γ∂t

∂2L
∂γ∂α

∂2L
∂γ∂β

∂2L
∂t∂γ

∂2L
∂t2

∂2L
∂t∂α

∂2L
∂t∂β

∂2L
∂α∂γ

∂2L
∂α∂t

∂2L
∂α2

∂2L
∂α∂β

∂2L
∂β∂γ

∂2L
∂β∂t

∂2L
∂β∂α

∂2L
∂β2




−1

(31)150

where Σγ is an n×n matrix; s[γ,t], s[γ,α] and s[γ,β] are n-element row vectors, s[t,γ], s[α,γ] and s[β,γ] are n-element

column vectors, and all other elements are scalars. The second derivatives are as follows:

∂2L
∂γ2

=−




UβW

αW

In×n




T

Σ−1
∆




UβW

αW

In×n


 (32)

∂2L
∂γ∂t

=
(
∂2L
∂t∂γ

)T
=−




UβW

αW

In×n




T

Σ−1
∆




(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1


 (33)155

∂2L
∂γ∂α

=
(
∂2L
∂α∂γ

)T
=




0n×n

W

0n×n




T

Σ−1
∆ ∆−




UβW

αW

In×n




T

Σ−1
∆




0n×1

Wγ

0n×1


 (34)

∂2L
∂γ∂β

=
(
∂2L
∂β∂γ

)T
=




UW

0n×n

0n×n




T

Σ−1
∆ ∆−




UβW

αW

In×n




T

Σ−1
∆




UWγ

0n×1

0n×1


 (35)

160

∂2L
∂t2

= ∆TΣ−1
∆




(eλ35tλ2
35)n×1

(eλ38tλ2
38)n×1

(eλ32tλ2
32)n×1


−




(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1




T

Σ−1
∆




(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1


 (36)

∂2L
∂t∂α

=
∂2L
∂α∂t

=−




01×n

Wγ

01×n




T

Σ−1
∆




(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1


 (37)
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∂2L
∂t∂β

=
∂2L
∂β∂t

=−




UWγ

0n×1

0n×1




T

Σ−1
∆




(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1


 (38)165

∂2L
∂α2

=−




0n×1

Wγ

0n×1




T

Σ−1
∆




0n×1

Wγ

0n×1


 (39)

∂2L
∂β2

=−




UWγ

0n×1

0n×1




T

Σ−1
∆




UWγ

0n×1

0n×1


 (40)

170

∂2L
∂α∂β

=
∂2L
∂β∂α

=−




UWγ

0n×1

0n×1




T

Σ−1
∆




0n×1

Wγ

0n×1


 (41)

The Fisher Information matrix is best solved by block matrix inversion. This is achieved by partitioning Equation 31 into four

parts, with ∂2L/∂γ2 defining the first block.

5 Overdispersion

If analytical uncertainty is the only source of data scatter around the discordia line, then the sum of squares S follows a central175

Chi-square distribution with 2n− 3 degrees of freedom (i.e., χ2
2n−3). Normalising S by the degrees of freedom gives rise to

the so-called reduced Chi-square statistic, which is also known as the Mean Square of the Weighted Deviates (MSWD):

MSWD =
S

2n− 3
(42)

Datasets are said to be overdispersed if S is greater than the 95% percentile of χ2
2n−3 or, equivalently, if MSWD� 1. This

is the case for the Gibson et al. (2016) dataset, whose MSWD = 8.6 (p-value ≈ 0). The overdispersion can be attributed to180

geological scatter in the concordia intercept age t. Suppose that this scatter follows a normal distribution with zero mean and

let ω be the standard deviation of this distribution. Then we can redefine Σ∆ as:

Σ∆ = JΣJT + Jωω
2JTω (43)

where

Jω =




−λ35e
λ35t1n×1

−λ38e
λ38t1n×1

−λ32e
λ32t1n×1


 (44)185
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ω can then be found by plugging Equation 43 into Equation 30 and maximising L. Like before, the uncertainty of ω is obtained

by inverting the Fisher Information, replacing Equation 31 with



Σγ s[γ,t] s[γ,α] s[γ,β] s[γ,ω]

s[t,γ] s[t]2 s[t,α] s[t,β] s[t,ω]

s[α,γ] s[α,t] s[α]2 s[α,β] s[α,ω]

s[β,γ] s[β,t] s[β,α] s[β]2 s[β,ω]

s[ω,γ] s[ω,t] s[ω,α] s[ω,β]2 s[ω]2




=−




∂2L
∂γ2

∂2L
∂γ∂t

∂2L
∂γ∂α

∂2L
∂γ∂β

∂2L
∂γ∂ω

∂2L
∂t∂γ

∂2L
∂t2

∂2L
∂t∂α

∂2L
∂t∂β

∂2L
∂t∂ω

∂2L
∂α∂γ

∂2L
∂α∂t

∂2L
∂α2

∂2L
∂α∂β

∂2L
∂α∂ω

∂2L
∂β∂γ

∂2L
∂β∂t

∂2L
∂β∂α

∂2L
∂β2

∂2L
∂β∂ω

∂2L
∂ω∂γ

∂2L
∂ω∂t

∂2L
∂ω∂α

∂2L
∂ω∂β2

∂2L
∂ω2




−1

(45)

where

∂2L
∂γ∂ω

=
(
∂2L
∂ω∂γ

)T
=−∆T ∂Σ−1

∆

∂ω




UβW

αW

In×n


 (46)190

∂2L
∂t∂ω

=
(
∂2L
∂ω∂t

)T
=−∆T ∂Σ−1

∆

∂ω




(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1


 (47)

∂2L
∂α∂ω

=
(
∂2L
∂ω∂α

)T
=−∆T ∂Σ−1

∆

∂ω




0n×1

Wγ

0n×1


 (48)

195

∂2L
∂β∂ω

=
(
∂2L
∂ω∂β

)T
=−∆T ∂Σ−1

∆

∂ω




UWγ

0n×1

0n×1


 (49)

∂2L
∂ω2

=−1
2

(
∂2ln |Σ∆|
∂ω2

+ ∆T ∂
2Σ−1

∆

∂ω2
∆
)

(50)

with

∂Σ−1
∆

∂ω
=−Σ−1

∆

∂Σ∆

∂ω
Σ−1

∆ (51)200

∂2Σ−1
∆

∂ω2
=−

(
∂Σ−1

∆

∂ω

∂Σ∆

∂ω
Σ−1

∆ + Σ−1
∆

∂2Σ∆

∂ω2
Σ−1

∆ + Σ−1
∆

∂Σ∆

∂ω

∂Σ−1
∆

∂ω

)
(52)

∂2ln |Σ∆|
∂ω2

= Tr
(
∂Σ−1

∆

∂ω

∂Σ∆

∂ω
+ Σ−1

∆

∂2Σ∆

∂ω2

)
(53)
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in which Tr(∗) stands for the trace of ∗ and205

∂Σ∆

∂ω
= 2JTω ωJω (54)

∂2Σ∆

∂ω2
= 2JTω Jω (55)

For the Gibson et al. (2016) dataset, the maximum likelihood estimate of the overdispersion parameter is 0.672 Ma with a

standard error of 0.16 Ma.

6 Dealing with skewed error distributions210

All the free parameters in the regression algorithm (t, α, β and ω) are strictly positive quantities. This positivity constraint man-

ifests itself in skewed error distributions. For example, when the four parameter algorithm of Section 5 is applied to datasets

that exhibit little or no overdispersion (ω ≈ 0), then the usual ‘2-sigma’ error bounds can cross over into physically impossible

negative data space. This section of the paper introduces two ways to deal with this problem.

215

A first solution is to obtain asymmetric uncertainty bounds for ω using a profile likelihood approach (Galbraith, 2005; Ver-

meesch, 2018). First, maximise Equation 30 for the four parameters t, α, β and ω. Denote the corresponding log-likelihood

value by Lm. Second, consider a range of values for ω around the maximum likelihood estimate. For each of these values,

maximise L for t, α and β whilst keeping ω fixed. Denote the corresponding log-likelihood by Lω . Finally, a 95% confidence

region for ω is obtained by collecting all the values of ω for which Lω > Lm− 3.85/2, where 3.85 corresponds to the 95th220

percentile of a chi-square distribution with one degree of freedom.

Figure 2 illustrates the profile likelihood method using the Gibson et al. (2016) dataset. The same procedure can also be ap-

plied to t, α and β, in order to obtain asymmetic confidence intervals for those parameters if needed. This would be particularly

useful for very young samples.225

A second and more pragmatic approach to dealing with the positivity constraint is to simply redefine the regression param-

eters in terms of logarithmic quantities. This is done by replacing Equations 12, 13 and 43 with:

K =X −U exp[β∗]Wγ− exp[λ35e
t∗ ] + 1 (56)

L= Y − exp[α∗]Wγ− exp[λ38e
t∗ ] + 1 (57)230

Σ∆ = JΣJT + Jω exp[ω∗]2JTω (58)

respectively, and maximising Equation 30 with respect to t∗, α∗, β∗ and ω∗. The standard errors for these log parameters

(again obtained from the Fisher Information matrix) can then be converted to asymmetric confidence intervals for t, α, β and

ω. Applying this approach to the Gibson et al. (2016) dataset yields results that are similar to those obtained using the profile
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Figure 2. Profile log-likelihood intervals of the overdispersion parameter ω (black, left) and log(ω) (black, right) for the Gibson et al. (2016)

dataset. The set of ω-values whose log-likelihood fall within a range of 1.92 from the maximum value define an asymmetric 95% confidence

interval. Alternatively, a standard symmetric confidence interval for log(ω) (grey, right) can be mapped to an asymmetric confidence interval

for ω (grey, left). The two approaches yield similar results.

log-likelihood method (Figure 2). Besides generating realistic confidence regions, the logarithmic reparameterisation of the235

likelihood function has the added benefit increasing the numerical stability of the maximum likelihood method.

7 Detrital samples

So far we have assumed that all the U-Th-Pb measurements are cogenetic and share the same common Pb composition. This

assumption is generally not valid for detrital minerals, which tend to contain a mixture of provenance components. In this case

the different crystals in a sample are not expected to plot along a single isochron line. However it is still possible to remove the240

common Pb component by making certain assumptions about the common Pb composition. One way to do this is to assume

that the mineral of interest was extracted from a reservoir of known U-Th-Pb composition.

For example, using the two-stage lead evolution model of Stacey and Kramers (1975), it is possible to predict the 206Pb/208Pb

and 207Pb/208Pb ratios of the reservoir for any given time t. In other words, any given value of the concordia intersection age245
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determines parameters α and β of Equation 10. If t < 3.7 Ga, then

α(t) =

[
206Pb
204Pb

]
3.7

+
[

238U
204Pb

]
sk

(
eλ383.7− eλ38t

)
[ 208Pb

204Pb

]
3.7

+
[ 232Th

204Pb

]
sk

(eλ323.7− eλ32t)
(59)

β(t) =

[
207Pb
204Pb

]
3.7

+ 1
U

[
238U
204Pb

]
sk

(
eλ353.7− eλ35t

)
[ 208Pb

204Pb

]
3.7

+
[ 232Th

204Pb

]
sk

(eλ323.7− eλ32t)
(60)

where
[
206Pb/204Pb

]
3.7

= 11.152,
[
208Pb/204Pb

]
3.7

= 31.23,
[
207Pb/204Pb

]
3.7

= 12.998,
[
238U/204Pb

]
sk

= 9.74, and
[
232Th/204Pb

]
sk

=

36.84. Substituting α(t) and β(t) for α and β in Equations 12–14 reduces the number of free parameters from three (α, β and250

t) to one (t). This provides a quick and numerically robust mechanism for common-Pb correction of detrital minerals.

8 Implementation in IsoplotR

The algorithms presented in this paper have been implemented in the IsoplotR software toolbox for geochronology (Ver-

meesch, 2018). The easiest way to use the U-Th-Pb isochron functions is via an online graphical user interface at http://isoplotr.london-geochron.com.

Alternatively, the same functions can also be accessed from the command line, using the R programming language. This section255

of the paper presents some code snippets to illustrate the key functions involved. This brief tutorial assumes that the reader

has R and IsoplotR installed on her/his computer. Further details about this are provided by Vermeesch (2018), and on the

aforementioned website. First, we need to load IsoplotR into R:

library(IsoplotR)

Two new data formats have been added to IsoplotR’s existing six U-Pb formats, to accommodate datasets comprising 232Th260

and 208Pb. The Gibson et al. (2016) dataset has been included in the IsoplotR package as two data files (UPb7.csv and

UPb8.csv), which are also available in the supplementary information of this paper.

UPb7.csv specifies the U-Th-Pb composition using the ‘Wetherill’ ratios 207Pb/235U, 206Pb/238U, 208Pb/232Th and 232Th/238U,

whereas UPb8.csv uses the ‘Tera-Wasserburg’ ratios 238U/206Pb, 207Pb/206Pb, 208Pb/206Pb and 232Th/238U. Both data formats265

require that the analytical uncertainties and error correlations of all the ratios are specified. The following commands load the

contents of UPb7.csv into a variable called UPb, and plot the data on a 208Pb/232Th vs. 206Pb/238U-concordia diagram:

UPb <- read.data('UPb7.csv',

method='U-Pb',format=7)

concordia(UPb,type=3)270

Performing a discordia regression and visualising the results as a 208Pbc/206Pb vs. 238U/206Pb isochron:

isochron(UPb,type=1)

which performs a three parameter regression without overdispersion. Accounting for overdispersion is done using the optional

model argument:
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fit <- isochron(UPb,type=1,model=3)275

where fit is a variable that stores the numerical results of the isochron regression. This is a list of items that can be inspected

by typing fit at the R command prompt. For example, the maximum likelihood estimates for t, α, β and ω are stored in

fit$par and the covariance matrix in fit$cov. Changing type to 2 plots the regression results as a 208Pbc/207Pb vs.
235U/207Pb isochron. The isochron results can also be visualised on the concordia diagram:

concordia(UPb,type=2,show.age=2)280

where type=2 produces a Tera-Wasserburg diagram and the show.age argument adds a three-parameter regression line to

it. Change this to show.age=4 for a four-parameter fit.

9 Discussion and future developments

This paper introduced a new algorithm for common Pb correction by joint regression of all Pb isotopes of U and Th. The

algorithm was successfully applied to a monazite dataset by Gibson et al. (2016). With a Th/U-ratio of ∼10, the Gibson et al.285

(2016) sample represents a ‘worst case scenario’, because the presence of significant amounts of radiogenic 208Pb complicates

the 208Pb-based common Pb correction. The fact that the Gibson et al. (2016) test case is successful holds great promise for the

application of the new algorithm to Th-poor materials such as carbonates.

The ingrowth of radiogenic Pb described by Equations 2–4 assumes initial secular equilibrium between all the intermediate290

daughters in the U-Th-Pb decay chains. The new discordia regression algorithm can be modified to accommodate departures

from this assumption. In fact, such disequilibrium corrections have already been implemented in IsoplotR, using the matrix

derivative approach of McLean et al. (2016). A manuscript detailing these calculation is in preparation by the latter author. The

disequilibrium correction is particularly useful for applications to young carbonates, whose initial 234U/238U and 230Th/238U

activity ratios may be far out of equilibrium.295

The new discordia regression algorithm is based on the method of maximum likelihood, and accounts for correlated un-

certainties between variables. For example, the analytical uncertainties of the 208Pb/232Th and 232Th/238U ratios in the Gibson

et al. (2016) dataset are characterised by correlation coefficients of ca. -0.6. However geochronological datasets are often as-

sociated with equally significant error correlations between samples (Vermeesch, 2015). The algorithm presented in this paper300

easily handles such correlations, which carry systematic uncertainty. It suffices to replace the zero values in the upper left

[3n×3n] sub-matrix of Equation 19 with non-zero values. Unfortunately, there currently exist no algorithms that keep track of

inter-sample error correlations in the context of U-Pb geochronology. Doing so will require a new generation of low level data

processing software.

305
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This new generation software will also need to deal with a second issue that negatively affects the accuracy of the U(-Th)-Pb

method, which is apparent from Figures 1.b and 1.c. After removing the radiogenic 208Pb-component from the Gibson et al.

(2016) dataset, the 95% confidence ellipse of one of the aliquots crosses over into negative 208Pbc/206Pb and 208Pbc/207Pb ratios.

This nonsensical result is related to the issues discussed in Section 6. Isotopic data are strictly positive quantities that exhibit

skewed error distributions. ‘Normal’ statistical operations such as averaging and the calculation of ‘2-sigma’ confidence inter-310

vals can produce counter-intuitive results when applied to such data.

In Section 6, the skewness of the fit parameters was removed by reformulating the regression algorithm in terms of log-

arithmic quantities. Similarly, Vermeesch (2015) showed that the skewness of isotopic compositions can be removed using

log-ratios, in the context of 40Ar/39Ar geochronology. McLean et al. (2016) introduced the same approach to in-situ U-Pb315

geochronology by LA-ICP-MS. Future software development will allow analysts to export their U-Th-Pb isotopic data directly

as logratios and covariance matrices. Such a data structure can still be analysed with the new discordia regression algorithm,

after a logarithmic change a variables for X , Y , Z and W in Equations 12, 13 and 14.

The U-Pb method is one of the most powerful and versatile methods in the geochronological toolbox. With two isotopes320

of the same parent (235U and 238U) decaying to two different isotopes of the same daughter (207Pb and 206Pb), the U-Pb

method offers an internal quality control that is absent from most other geochronological techniques. U-bearing minerals often

contain significant amounts of Th, which decays to 208Pb. However until this day geochronologists have not frequently used

this additional parent-daughter pair to its full potential. It is hoped that the algorithm and software presented in this paper will

change this situation.325
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